Pollutants in the atmosphere

Once pollutants enter the troposphere they are transported downwind, diluted by the large volume of air, transformed through either physical or chemical changes or are removed from the atmosphere by rain during which they are attached to water vapour that subsequently forms rain or snow that falls to the earth’s surface. The atmosphere normally disperses pollutants by mixing them in the very large volume of air that covers the earth. This dilutes the pollutants to acceptable levels. The rate of dispersion how ever varies in relation to the following aspects:

Normally as the earth’s surface becomes warmed by sunlight the layer of air in contact with the ground is also heated by convection. This warmer air is less dense than the cold air above it, so it rises. Thus pollutants produced in the surface layer are effectively dispersed. However on a still evening, the process is reversed.

An hour or two before sunset after a sunny day, the ground starts to lose heat and the air near the ground begins to cool rapidly. Due to the absence of wind, a static layer of cold air is produced as the ground cools. This in turn induces condensation of fog. The morning sun cannot initially penetrate this fog layer. The cold air being dense cannot rise and is trapped by the warm air above. It cannot move out of the area due to the surrounding hills. The topographic features resemble a closed chemical reactor in which the pollutants are trapped. This condition often continues through the cool night and reaches its maximum intensity before sunrise. When the morning sun warms the ground the air near the ground also warms up and rises within an hour or two. This may be broken up by strong winds. In cold regions this situation can persist for several days. Such a situation is known as smog (smoke + fog).

The most well known example is that of the ‘London Smog’ that occurred in 1952. The city used large quantities of sulphur containing coal for domestic heating that released smoke, along with smoke from thermal power plants and other industrial establishments. This used to lead to the generation of high levels of smoke containing sulphur oxides. Due to a sudden adverse meteorological condition air pollutants like smoke and sulphur oxides started to build-up in the atmosphere. The white fog accumulated over the city turned black forming a ‘pea-soup’ smog with almost zero visibility. Within two days of the formation of this smog, people started suffering from acute pulmonary disorders which caused irritation of bronchi, cough, nasal discharges, sore throat, vomiting and burning sensations in the eyes. This event lead to several deaths.

Meteorological conditions
The velocity of the wind affects the dispersal of pollutants. Strong winds mix polluted air more rapidly with the surrounding air diluting the pollutants rapidly. When wind velocity is low mixing takes place and the concentration of pollutants remains high.

When sulphur dioxide and nitrogen oxides are transported by prevailing winds they form secondary pollutants such as nitric acid vapour, droplets of sulfuric acid and particles of sulphate and nitrate salts. These chemicals descend on the earth’s surface in two forms: wet (as acidic rain, snow, fog and cloud vapour) and dry (as acidic particles). The resulting mixture is called acid deposition, commonly called acid rain. Acid deposition has many harmful effects especially when the pH falls below 5.1 for terrestrial systems and below 5.5 for aquatic systems. It contributes to human respiratory diseases such as bronchitis and asthma, which can cause premature death. It also damages statues, buildings, metals and car finishes. Acid deposition can damage tree foliage directly but the most serious effect is weakening of trees so they be come more susceptible to other types of damage. The nitric acid and the nitrate salts in acid deposition can lead to excessive soil nitrogen levels. This can over stimulate growth of other plants and intensify depletion of other important soil nutrients such as calcium and magnesium, which in turn can reduce tree growth and vigour.

0 0 vote
Article Rating
Notify of

This site uses Akismet to reduce spam. Learn how your comment data is processed.

1 Comment
Newest Most Voted
Inline Feedbacks
View all comments